當前位置:首頁 > 文章資訊 > 電子專業 > 射頻電路仿真之4大方面教你設計射頻電路
射頻電路仿真之4大方面教你設計射頻電路
4大方面教你設計射頻電路仿真
想學習基于ADS射頻集成電路仿真知識,有什么書或者資料介紹?
僅仿真知識的話,徐興福的ADS射頻電路設計與仿真實例有些幫助。雖然講的是射頻板級,但是電路原理和需要操作的步驟都差不多。主要是后仿真和layout設計這一塊,可能你需要借鑒一下其他書了。我射頻集成電路主要是在cadence下設計的,因此給不了你太多幫助。而且仿真這一塊找個師兄帶一帶,很容易上手的。仿真不是目的,只是手段,因此不會太難。
然后射頻集成電路的知識,需要看射頻微電子學,模擬集成電路(拉扎維,Gray,Allen),拉扎維射頻集成電路(這本書我建議看英文,中文感覺有點問題),微波工程(這本書可分情況看,這本書我自己都沒看完,講的很細,但是都是很基礎的理論知識,可以通過其他途徑補充)
不同應用中的射頻收發電路有不同的特性,但是有些共性卻是在不同的設計中都需要關注的,本文從射頻界面、小的期望信號、大的干擾信號、相鄰頻道的干擾四個方面解讀射頻電路四大基礎特性,并給出了在PCB設計過程中需要特別注意的重要因素。
射頻電路仿真之射頻的界面
無線發射器和接收器在概念上,可分為基頻與射頻兩個部份。基頻包含發射器的輸入信號之頻率范圍,也包含接收器的輸出信號之頻率范圍。基頻的頻寬決定了數據在系統中可流動的基本速率。基頻是用來改善數據流的可靠度,并在特定的數據傳輸率之下,減少發射器施加在傳輸媒介(transmission medium)的負荷。因此PCB設計基頻電路時,需要大量的信號處理工程知識。發射器的射頻電路能將已處理過的基頻信號轉換、升頻至指定的頻道中,并將此信號注入至傳輸媒體中。相反的,接收器的射頻電路能自傳輸媒體中取得信號,并轉換、降頻成基頻。
發射器有兩個主要的PCB設計目標:第一是它們必須盡可能在消耗最少功率的情況下,發射特定的功率。第二是它們不能干擾相鄰頻道內的收發機之正常運作。就接收器而言,有三個主要的PCB設計目標:首先,它們必須準確地還原小信號;第二,它們必須能去除期望頻道以外的干擾信號;最后一點與發射器一樣,它們消耗的功率必須很小。
射頻電路仿真之大的干擾信號
接收器必須對小的信號很靈敏,即使有大的干擾信號(阻擋物)存在時。這種情況出現在嘗試接收一個微弱或遠距的發射信號,而其附近有強大的發射器在相鄰頻道中廣播。干擾信號可能比期待信號大60~70 dB,且可以在接收器的輸入階段以大量覆蓋的方式,或使接收器在輸入階段產生過多的噪聲量,來阻斷正常信號的接收。如果接收器在輸入階段,被干擾源驅使進入非線性的區域,上述的那兩個問題就會發生。為避免這些問題,接收器的前端必須是非常線性的。
因此,“線性”也是PCB設計接收器時的一個重要考慮因素。由于接收器一般是窄頻電路,所以非線性是以測量“交調失真(intermodulation distortion)”來統計的。這牽涉到利用兩個頻率相近,并位于中心頻帶內(in band)的正弦波或余弦波來驅動輸入信號,然后再測量其交互調變的乘積。大體而言,SPICE是一種耗時耗成本的仿真軟件,因為它必須執行許多次的循環運算以后,才能得到所需要的頻率分辨率,以了解失真的情形。
射頻電路仿真之小的期望信號
接收器必須很靈敏地偵測到小的輸入信號。一般而言,接收器的輸入功率可以小到1μV。接收器的靈敏度被它的輸入電路所產生的噪聲所限制。因此,噪聲是PCB設計接收器時的一個重要考慮因素,而且具備以仿真工具來預測噪聲的能力是不可或缺的。圖一是一個典型的超外差(superheterodyne)接收器。接收到的信號先經過濾波,再以低噪聲放大器(LNA)將輸入信號放大。然后利用第一個本地振蕩器(LO)與此信號混合,以使此信號轉換成中頻(IF)。前端(front-end)電路的噪聲效能主要取決于LNA、混頻器(mixer)和LO。雖然使用傳統的SPICE噪聲分析,可以尋找到LNA的噪聲,但對于混頻器和LO而言,它卻是無用的,因為在這些區塊中的噪聲,會被很大的LO信號嚴重地影響。
小的輸入信號要求接收器必須具有極大的放大功能,通常需要120dB這么高的增益。在這么高的增益下,任何自輸出端耦合(couple)回到輸入端的信號都可能產生問題。使用超外差接收器架構的重要原因是,它可以將增益分布在數個頻率里,以減少耦合的機率。這也使得第一個LO的頻率與輸入信號的頻率不同,可以防止大的干擾信號“污染”到小的輸入信號。
因為不同的理由,在一些無線通訊系統中,直接轉換(direct conversion)或內差(homodyne)架構可以取代超外差架構。在此架構中,射頻輸入信號是在單一步驟下直接轉換成基頻,因此大部份的增益都在基頻中,而且LO與輸入信號的頻率相同。在這種情況下,必須了解少量耦合的影響力,并且必須建立起“雜散信號路徑(stray signal path)”的詳細模型,譬如:穿過基板(substrate)的耦合、封裝腳位與焊線(bondwire)之間的耦合、和穿過電源線的耦合。
射頻電路仿真之相鄰頻道的干擾
失真也在發射器中扮演著重要的角色。發射器在輸出電路所產生的非線性,可能使傳送信號的頻寬散布于相鄰的頻道中。這種現象稱為“頻譜的再成長(spectral regrowth)”。在信號到達發射器的功率放大器(PA)之前,其頻寬被限制著,但在PA內的“交調失真”會導致頻寬再次增加。如果頻寬增加的太多,發射器將無法符合其相鄰頻道的功率要求。當傳送數字調變信號時,實際上,是無法用SPICE來預測頻譜的再成長。因為大約有1000個數字符號(symbol)的傳送作業必須被仿真,以求得代表性的頻譜,并且還需要結合高頻率的載波,這些將使SPICE的瞬態分析變得不切實際。
以上就是100唯爾(100vr.com)小編為您介紹的關于射頻電路仿真的知識技巧了,學習以上的射頻電路仿真之4大方面教你設計射頻電路知識,對于射頻電路仿真的幫助都是非常大的,這也是新手學習電子專業所需要注意的地方。如果使用100唯爾還有什么問題可以點擊右側人工服務,我們會有專業的人士來為您解答。
本站在轉載文章時均注明來源出處,轉載目的在于傳遞更多信息,未用于商業用途。如因本站的文章、圖片等在內容、版權或其它方面存在問題或異議,請與本站聯系(電話:0592-5551325,郵箱:help@onesoft.com.cn),本站將作妥善處理。
下一篇: 電工高級技師報考條件是什么?
射頻電路仿真課程推薦
電子專業技術文檔
推薦閱讀
